Hodge and Laplace-Beltrami Operators for Bicovariant Differential Calculi on Quantum Groups

نویسنده

  • István Heckenberger
چکیده

For bicovariant differential calculi on quantum matrix groups a generalisation of classical notions such as metric tensor, Hodge operator, codifferential and Laplace-Beltrami operator for arbitrary k-forms is given. Under some technical assumptions it is proved that Woronowicz’ external algebra of left-invariant differential forms either contains a unique form of maximal degree or it is infinite dimensional. Using Jucys-Murphy elements of the Hecke algebra the eigenvalues of the Laplace-Beltrami operator for the Hopf algebra O(SLq(N)) are computed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

De Rham Cohomology and Hodge Decomposition for Quantum Groups

ISTVÁN HECKENBERGER and AXEL SCHÜLER Abstra t Let Γ = Γτ,z be one of the N -dimensional bicovariant first order differential calculi for the quantum groups GLq(N), SLq(N), SOq(N), or Spq(N), where q is a transcendental complex number and z is a regular parameter. It is shown that the de Rham cohomology of Woronowicz’ external algebra Γ coincides with the de Rham cohomologies of its left-coinvar...

متن کامل

Covariant Bimodules and Differential Calculi on Quantum Groups of Type B, C, D

Non-Commutative differential calculi on quantum groups were first studied by S. L. Woronowicz [W1], [W2]. His seminal paper [W2] provides a general framework for such calculi. Following the general ideas of A. Connes the basic objects in this approach are differential forms rather than vector fields. It seems that there is no functorial way to construct differential calculi for general quantum ...

متن کامل

Reportrapport from Exponential Coordinates to Bicovariant Differential Calculi on Matrix Quantum Groups from Exponential Coordinates to Bicovariant Diierential Calculi on Matrix Quantum Groups

A procedure to obtain bicovariant diierential calculi on matrix quantum groups is presented. The construction is based on the description of the matrix quantum group as a quantized universal enveloping algebra by the use of exponential coordinates. The procedure is illustrated by applying it to the two-dimensional solvable quantum group and the Heisen-berg quantum group.

متن کامل

CLASSIFICATION OF BICOVARIANT DIFFERENTIAL CALCULI ON THE JORDANIAN QUANTUM GROUPS GLh,g(2) AND SLh(2) AND QUANTUM LIE ALGEBRAS

We classify all 4-dimensional first order bicovariant calculi on the Jordanian quantum group GLh,g(2) and all 3-dimensional first order bicovariant calculi on the Jordanian quantum group SLh(2). In both cases we assume that the bicovariant bimodules are generated as left modules by the differentials of the quantum group generators. It is found that there are 3 1-parameter families of 4-dimensio...

متن کامل

A class of bicovariant differential calculi on Hopf algebras

We introduce a large class of bicovariant differential calculi on any quantum group A, associated to Ad-invariant elements. For example, the deformed trace element on SLq(2) recovers Woronowicz’ 4D± calculus. More generally, we obtain a sequence of differential calculi on each quantum group A(R), based on the theory of the corresponding braided groups B(R). Here R is any regular solution of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008